

How do we LOCATE casualties and resources?

How to ALLOCATE resources?

How to DEPLOY rescue teams across a large area?

How do we TRUST the information gathered?

Information Gathering and Coordination in Disaster Response

Haiti: Port-au-Prince

Volunteers and Emergency Responders from multiple agencies (Bronze)

Command and Control Structures (Silver)

Crowdsourced Reporting and Response

UAVs for situational awareness

Information Gathering and Decision Making Loop

Information gathering and coordination loops

4

Provenance of Decisions and Information

CrowdScanner: making sense of crowd reports using human and machine intelligence

Interpretation

- Online (imperfect) Crowds + Machine Learning (BCC+ NLP)
- Hire+Fire algorithm to recruit the best workers and get the best interpretation
- Heatmap creation
 - Gaussian Process to model disaster
 - Fold in trusted reports
 - Use classification output to generate intensity
- Generate targets for UAVs

Mixed Initiative Multi-UAV Coordination

- 1 pilot -> 3+ UAVs
- Heterogeneous UAVs running max-sum
- Flexible Autonomy
 - 'Adjust' max-sum plans
 - React to UAV drop-outs
 - Transfer of control between Silver, UAVs, and Bronze operators
- Validated on real UAVs
- Tested with 40 users
- UAVs Targets confirmed for Responders to be deployed

Human-Agent Collaboration for Task Allocation

- Human-Agent Silver team allocate tasks to Bronze responder team
- Agent uses Multi-agent Markov Decision Process
 - Computes best task for each responder, and best path for each task
 - Models environment (buildings and lakes are obstacles)
- Responders get instructions via mobile app
- Trialed in the AtomicOrchid Mixed Reality Game with 100+ users including emergency responders.
- Available as a testbed for research

Supporting Human and Agent Decision Makers using Provenance

- Timely Decision
 Support
 - Live monitoring of provenance for changes
 - Ensures the <u>whole</u><u>system</u> reacts to changes
- Post-hoc analysis

Example:

- During the operation, UAVs invalidate targets,
- Prov tracker immediately notifies Silver commanders at HQ
- Prov tracker identifies impacted rescue missions

HAC Interactional Arrangements

Multiple Humans as Sensors Single Agent Learning Multiple Humans Planning Multiple Agents Planning Embodied Agents Multiple Humans Planning Single Agent Planning Provenance Agent Multiple Humans Multiple Agents

Emergency Response organisations we work with

- Nepal Earthquake
 Mapping with
 Zooniverse/Verily/
 SBTF
- Hampshire LRF crowdsourcing platform
- Training tool
- Table-Top Planning for Rescue Global

More info/videos:

- <u>www.orchid.ac.uk</u>

Best Paper: Innovative Application Track AAMAS 2015

HAC-ER: A Disaster Response System Based on Human-Agent Collectives